Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Eur Urol Open Sci ; 49: 6-9, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2178647

ABSTRACT

The coronavirus disease 2019 pandemic has drawn attention to telesurgery. Important advances in fifth-generation (5G) mobile telecommunication technology have facilitated the rapid evolution of telesurgery. Previously, only a single console was used in telesurgery; thus, there was the possibility of open or laparoscopic conversion. Furthermore, the 5G network has not been available for regional hospitals in China. From October 2021 to April 2022, dual-console telesurgeries with the KangDuo Surgical Robot-01 (KD-SR-01) system were performed using 5G and wired networks in an animal experiment and clinical study. A partial nephrectomy in a porcine model was performed successfully using a wired network. The console time, warm ischemia time, and control swap time were 69 min, 27 min, and 3 s, respectively. The mean latency time was 130 (range, 60-200) ms. A 32-yr-old male patient successfully underwent a remote pyeloplasty using a series connection of 5G wireless and wired networks. The console time and control swap time were 98 min and 3 s, respectively. The mean latency time was 271 (range, 206-307) ms. In the two studies, data pocket loss was <1%. The results demonstrated that dual-console telesurgery with the KD-SR-01 system is feasible and safe using 5G and wired networks. Patient summary: Advances in fifth-generation (5G) mobile telecommunication technology helped in the rapid evolution of telesurgery. Dual-console telesurgery performed with the KD-SR-01 system using 5G and wired networks was shown to be feasible and safe in an animal experiment and clinical study.

2.
Science ; 378(6622): eabo2523, 2022 11 25.
Article in English | MEDLINE | ID: covidwho-2088384

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has highlighted the need for vaccines that not only prevent disease but also prevent transmission. Parenteral vaccines induce robust systemic immunity but poor immunity at the respiratory mucosa. We developed a vaccine strategy that we call "prime and spike," which leverages existing immunity generated by primary vaccination (prime) to elicit mucosal immune memory within the respiratory tract by using unadjuvanted intranasal spike boosters (spike). We show that prime and spike induces robust resident memory B and T cell responses, induces immunoglobulin A at the respiratory mucosa, boosts systemic immunity, and completely protects mice with partial immunity from lethal SARS-CoV-2 infection. Using divergent spike proteins, prime and spike enables the induction of cross-reactive immunity against sarbecoviruses.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Mucosal , Immunologic Memory , Memory B Cells , Memory T Cells , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Mice , Administration, Intranasal , Antibodies, Viral , COVID-19/prevention & control , COVID-19/transmission , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Immunoglobulin A , Memory B Cells/immunology , Memory T Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL